Резонансная фотоэнергетика геометрическая теория..
"Резонансная фотоэнергетика: геометрическая теория эффективного переноса энергии в фотосинтезе"
на русском языке
https://zenodo.org/records/18309156
Resonant Photoenergetics: A Geometric Theory of Efficient Energy Transfer in Photosynthesis
на английском языке
https://zenodo.org/records/18307887
Аннотация
Несмотря на десятилетия исследований, физический механизм сверхэффек-
тивного переноса энергии в фотосинтетических комплексах остается предметом
дискуссий. Мы предлагаем альтернативную концептуальную основу, в которой
ключевую роль играет не квантовая когерентность или классическая диффу-
зия per se, а геометрическая архитектура расположения хромофоров, кото-
рая преобразует недирективные тепловые флуктуации в направленный поток
энергии. Мы формулируем теорию резонансной фотоэнергетики, делаем кон-
кретные экспериментально проверяемые предсказания и предлагаем принципы
проектирования искусственных светособирающих систем. Работа является при-
глашением к экспериментальной проверке выдвинутых гипотез
****
****
Список литературы
[1] Blankenship RE. Molecular Mechanisms of Photosynthesis. 2nd ed. Wiley-Blackwell;
2014.
[2] Croce R, van Amerongen H. Natural strategies for photosynthetic light harvesting.
Nat Chem Biol. 2014;10(7):492-501.
[3] Engel GS, Calhoun TR, Read EL, et al. Evidence for wavelike energy transfer through
quantum coherence in photosynthetic systems. Nature. 2007;446(7137):782-786.
[4] Jordan P, Fromme P, Witt HT, et al. Three-dimensional structure of cyanobacterial
photosystem I at 2.5 ; A resolution. Nature. 2001;411(6840):909-917.
[5] Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving
photosystem II at a resolution of 1.9 ; A. Nature. 2011;473(7345):55-60.
[6] Nelson N, Junge W. Structure and energy transfer in photosystems of oxygenic
photosynthesis. Annu Rev Biochem. 2011;80:109-124.
[7] F;orster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys.
1948;437(1-2):55-75.
[8] Scholes GD. Long-range resonance energy transfer in molecular systems. Annu Rev
Phys Chem. 2003;54:57-87.
[9] Cheng YC, Fleming GR. Dynamics of light harvesting in photosynthesis. Annu Rev
Phys Chem. 2009;60:241-262.
[10] Collini E, Wong CY, Wilk KE, et al. Coherently wired light-harvesting in
photosynthetic marine algae at ambient temperature. Nature. 2010;463(7281):644-
647.
[11] Plenio MB, Huelga SF. Dephasing-assisted transport: quantum networks and
biomolecules. New J Phys. 2008;10(11):113019.
[12] Ishizaki A, Fleming GR. Theoretical examination of quantum coherence in a
photosynthetic system at physiological temperature. Proc Natl Acad Sci USA.
2009;106(41):17255-17260.
[13] Tempelaar R, Jansen TLC, Knoester J. Vibrational beatings conceal evidence
of electronic coherence in the FMO light-harvesting complex. J Phys Chem B.
2014;118(45):12865-12872.
[14] Duan HG, Stevens AL, Nalbach P, et al. Nature does not rely on long-lived electronic
quantum coherence for photosynthetic energy transfer. Proc Natl Acad Sci USA.
2017;114(32):8493-8498.
[15] Cao J, Cogdell RJ, Coker DF, et al. Quantum biology revisited. Sci Adv.
2020;6(14):eaaz4888.
[16] Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A. Environment-assisted quantum
walks in photosynthetic energy transfer. J Chem Phys. 2008;129(17):174106.
[17] Rebentrost P, Mohseni M, Kassal I, et al. Environment-assisted quantum transport.
New J Phys. 2009;11(3):033003.
[18] Havlin S, Ben-Avraham D. Diffusion in disordered media. Adv Phys. 1987;36(6):695-
798.
[19] Brixner T, Stenger J, Vaswani HM, et al. Two-dimensional spectroscopy of electronic
couplings in photosynthesis. Nature. 2005;434(7033):625-628.
[20] Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R. Energy-transfer
dynamics in the LHCII complex of higher plants: modified Redfield approach. J Phys
Chem B. 2004;108(29):10363-10375.
[21] Reimann P. Brownian motors: noisy transport far from equilibrium. Phys Rep.
2002;361(2-4):57-265.
[22] H;anggi P, Marchesoni F. Artificial Brownian motors: Controlling transport on the
nanoscale. Rev Mod Phys. 2009;81(1):387-442.
[23] Hasan MZ, Kane CL. Colloquium: Topological insulators. Rev Mod Phys.
2010;82(4):3045-3067.
[24] Stein IH, Steinhauer C, Tinnefeld P. Single-molecule four-color FRET visualizes
energy-transfer paths on DNA origami. J Am Chem Soc. 2011;133(12):4193-4195.
[25] Dutta PK, Varghese R, Nangreave J, et al. DNA-directed artificial light-harvesting
antenna. J Am Chem Soc. 2011;133(31):11985-11993.
[26] Wendling M, Pullerits T, Przyjalgowski MA, et al. Electron-vibrational coupling
in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by
temperature-dependent absorption and fluorescence line-narrowing measurements. J
Phys Chem B. 2000;104(24):5825-5831.
[27] Jonas DM. Two-dimensional femtosecond spectroscopy. Annu Rev Phys Chem.
2003;54:425-463.
[28] Buckhout-White S, Spillmann CM, Algar WR, et al. Assembling programmable
FRET-based photonic networks using designer DNA scaffolds. Nat Commun.
2014;5:5615.
[29] So MC, Wiederrecht GP, Mondloch JE, et al. Metal-organic framework materials for
light-harvesting and energy transfer. Chem Commun. 2015;51(17):3501-3510.
[30] Balzani V, Ceroni P, Juris A, et al. Dendrimers based on photoactive metal
complexes. Recent advances. Coord Chem Rev. 2001;219-221:545-572.
[31] Panitchayangkoon G, Hayes D, Fransted KA, et al. Long-lived quantum coherence
in photosynthetic complexes at physiological temperature. Proc Natl Acad Sci USA.
2010;107(29):12766-12770.
[32] van Grondelle R, Dekker JP, Gillbro T, Sundstr;om V. Energy transfer and trapping
in photosynthesis. Biochim Biophys Acta. 1994;1187(1):1-65.
Свидетельство о публикации №226012000252